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SUPERCRITICAL FLOW OVER A SILL IN AN OPEN CHANNEL

UDC 532.59V. I. Bukreev

Experimental data on typical profiles of free surface and channel bottom pressure for a supercritical
flow over a sill are reported. This flow is shown to have, along with the known critical depth, two other
characteristic depths, one of which is at the channel exit to the atmosphere and the other determines
conditions under which the disturbances propagate well upstream of the sill. The experimental data
are compared with calculation results based on a mathematical model that incorporates turbulent
mixing upon wave breaking.

Introduction. In the theory of fluid wave motions, mathematical models have been lately developed
that incorporate factors such as nonhydrostatic pressure distribution, nonuniform vertical distribution of velocity,
presence of strong vorticity, mixing after wave breaking and loss of energy. These models are reviewed in [1]. On
their basis, it is possible to calculate very complicated flows in more detail than on the basis of traditional models
and to analyze important applied problems. In particular, calculations of unsteady motions in open channels are
made, as a rule, on the basis of the Saint Venant equations [2–4]. These equations employ the hydrostatic law of
pressure distribution over the flow depth. Although the Saint Venant equations incorporate energy losses (on the
empirical basis), they are, in essence, the equations of the first approximation of shallow water theory and they
do not describe, for example, waves of the undular bore type formed during the evolution of rather intense initial
disturbances [5–7]. A bore with a breaking leading front is simulated in this model by a free surface discontinuity.
The models taking into account the nonhydrostaticity of pressure distribution and mixing simulates the real processes
more adequately [8].

Testing and further development of new models require additional experimental information for a number
of classical problems of hydraulics in that range of determining parameters in which the previously used models
diverge substantially from the experiment. One of such problems — the flow over a sill on the bottom of an open
channel — is considered in the present work. This flow has 10 strongly differing regimes. This paper gives examples
of the most typical flow regimes for the case where the incident flow is supercritical.

The most detailed investigation of sill overflow was made primarily to determine the discharge coefficient in
the subcritical regime (see, for example, [9, 10]). Smyslov [11] proposed one of the first theories that incorporated
the nonhydrostaticity of pressure distribution in subcritical sill overflow. The greatest number of experimental data
for the case of supercritical incident flow was obtained primarily in studies of the motion of a streamlined obstacle
in a steady, density stratified fluid flow [12, 13]. Under certain assumptions, these data can be extended to the case
of sill overflow in a homogeneous fluid, using the principle of motion reversal and considering free-surface flow as
a special case of a two-layer fluid [12]. One should take into account that both assumptions have a limited field of
application [14].

Experimental Procedure. The experiments were performed in a rectangular channel of Plexiglas, 390
cm long and B = 6 cm wide, with zero bottom slop. Supercritical (rapid) flow was generated by a nozzle, whose
internal surface was profiled by a hyperbolic tangent. Measurements showed that at the nozzle outlet there were a
local depression of the free surface level (by about 4% of the nozzle outlet height) and a local decrease in channel
bottom pressure (by about 6% of the hydrostatic pressure). The sill was placed outside the influence of these local
nonuniformities, which were manifested at a downstream distance not exceeding the nozzle height.
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Fig. 1. Free-surface profile behind sill 1 (h∗ = 4 cm, b0 = 0.35, and Fr = 2.63).

It should be noted that for a channel of limited length, the method of level regulation in its outlet section is
of great importance. For example, if the flow is compressed from the top by a vertical plate, the incident waves can
be reflected from it. If a regulating plate compresses the flow from the bottom and the flow behind it enters the
atmosphere, then no wave reflection is observed. However, in this case, at an upstream distance, the mean position
of the free surface level changes, which leads to wave transformation due to a change in flow depth. In this study,
both methods of regulation were used.

The experiments were performed with sills of various shapes and dimensions made of Plexiglas. The sill 1
had the shape of a circular segment. Its radius R and height b (and, therefore, length l) were varied. The sill 2 had
a rectangular cross section of height b and length l. We also considered the case of a step where the back face of
the rectangular sill was in the channel outlet section (sill 2a). The sill 3 had a streamlined shape. Its front face was
delineated by a circular arc with a radius of 14 cm, the upper face was a horizontal plane and the back face was a
plane inclined to the channel bottom at an angle of 11◦. The height of this sill b = 2.4 cm and its length l = 30 cm
were not varied. The sill 3a differed from the sill 3 only in the shape of the front face. This face was delineated by
a hyperbolic tangent equation instead of a circle equation, since in supercritical flow the use of a sharpened leading
front is preferred to a rounded one. The upper and back faces were not varied. The total length of the sill increased
to 50 cm. The experiments showed that, everything else equal, the difference in the free-surface profiles over the
sills 3 and 3a did not exceed the measurement error.

The volumetric discharge of the fluid Q was measured by a standard Venturi tube located in the supplying
pipeline. The flow depth at different points along the channel length was determined with measuring needles. The
mean velocity was measured with a Pitot tube and piezometers. The standard measurement error did not exceed
0.5% for discharge, 1% for velocity, and 1% for depth. For visualization of the flow structure, particles of aluminum
powder were introduced into the flow. Photo and video recording were also employed.

Results of the experiments show that for steady nonuniform flow in an open channel, in particular, in
transition from one flow regime to another, the following three characteristic depths play an important role:

h∗ = 3
√
q2/g, h∗∗ ≈ 0.77h∗, h∗∗∗ ≈ 1.27h∗.

Here q = Q/B is the discharge intensity (per unit of channel width) and g is the acceleration of gravity. The values
of the coefficients are obtained by experiment. In hydraulics, h∗ is called a critical depth [9, 10]. A flow of depth
h > h∗ is called subcritical (calm), and a flow of depth h < h∗ is called supercritical (rapid) [9, 10]. In the range
of values h ≈ h∗∗, the shape of the hydraulic jump changes. For an incident flow of depth h− < h∗∗, a classical
hydraulic jump with a roller in its head takes place, and in the range h∗∗ < h− < h∗, a smooth undular jump
forms. Below we consider examples in which the value of the characteristic depth h∗∗ is important along with h∗.
The depth h∗∗∗ is conjugate with h∗∗ (the meaning of this term is explained in [9, 10]). In plotting, the linear
dimensions were normalized to h∗. Dimensionless quantities are denoted by the superscript 0. The characteristic
Froude number is defined as

Fr = q/(h−
√
gh− ) = (h∗/h−)3/2.
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Fig. 2. Free-surface profile between two sills 1 (h∗ = 7.65 cm, Fr = 3.7, b0 = 0.431, and b01 = 0.183).

Experimental Results. Figure 1 shows free-surface profile η0(x0) (x0 is the dimensionless longitudinal
coordinate) in the neighborhood of the sill 1 for the case where the exit flow freely enters the atmosphere and the
depth of the incident flow h− < h∗∗ < h∗. In the absence of the sill, the flow remained supercritical up to the
exit from the channel. In the presence of the sill, intense nonlinear waves formed, which actually are a variety of a
smooth undular hydraulic jump but have some special features.

The points A and B in Fig. 1 correspond to reciprocally conjugate values of η0 calculated from the following
formula [9, 10]:

η0
B = η0

A[
√

1 + 8/(η0
A)3 − 1]/2. (1)

Over the flat bottom, the ratio of the conjugate depths for which the free-surface profile in Fig. 1 was
obtained corresponds to the region of existence of perfect hydraulic jumps with a roller at its head [9]. However,
in the experiment, a smooth undular jump occurred. Thus, this example shows that in the presence of a sill, the
region of existence of smooth undular jumps increases.

An interesting feature of the example considered is that at the exit channel, the characteristic depth h0
∗∗ is

established, and immediately over the sill crest (at the point C), η0
C = h0

∗∗∗. As a result, undulations occur mainly
in the subcritical flow in the neighborhood of the depth h0

∗∗∗ rather than the depth η0
B , as would be the case for

an undular jump over a flat bottom. Therefore, other things being equal, the potential energy of a flow with an
undular jump is lower behind a sill than over a flat bottom.

In this case, perturbations do not propagate well upstream. The experiments show (see below) that in the
case of a streamlined sill, for perturbations to propagate well upstream, the free-surface level over the crest (at the
point C) must exceed the characteristic conjugate depth h0

∗∗∗. In the example considered, the state of the flow is
nearly critical. With a 3% decrease in discharge, a bore with a breaking leading front was propagating upstream of
the sill.

Figure 2 shows a free-surface profile behind the same sill as in Fig. 1 but with a larger value of Fr. In
addition, at the channel exit there is an obstacle in the form of a sill of the same type but of lower height:
b01 = 0.183. A solitary hump (“soliton”) and a stretched valley with supercritical flow are formed behind the main
sill of height b0 = 0.431. Another “soliton” in Fig. 2 is formed under the influence of the specific conditions at the
channel exit. Other conditions can lead to the formation of an undular or a classical hydraulic jump. We note that
in the example considered, the characteristic depth h0

∗∗ is also formed at the channel exit, i.e., at the point D in
Fig. 2 the relation η0

D = h0
∗∗+ b01 holds. Thus, the range in which this regularity holds is extended to that obtained

before, in particular, for subcritical flow.
In contrast to the example in Fig. 1, the state of this flow is far from critical, under which waves begin to

propagate upstream of the obstacle. Nevertheless, directly over the sill crest, η0
C ' h0

∗∗∗. Therefore, this condition
(convenient in mathematical modeling) holds within a sufficiently wide range of parameters, whose boundaries are
to be studied. We can note tentatively that the sill must be streamlined and sufficiently short so that the maximum
of the “soliton” formed over it is displaced downstream of the sill crest.

Figure 3 shows flow over the sill 2a (step) for the case where a classical hydraulic jump is formed behind the
sill. Of special interest are two facts. First, before the jump (at the C point), the relation η0

C = h0
∗∗ holds. Second,

the free-surface levels at the points A and B are mutually conjugated by (1) obtained for the jump over the flat
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Fig. 3. Classical hydraulic jump behind a step (sill 2a) (h∗ = 4.2 cm, b0 = 0.26, and Fr = 3.11;
distance from the step to the channel exit l0 = 21).

Fig. 4. Profiles of free-surface η0 (1, 3, and 5) and channel bottom pressure p0 (2, 4, and 6) at
h∗ = 5.8 cm, b0 = 0.42, Fr = 2.75, and h0

+ = 1.7 (1 and 2), 1.6 (3 and 4), and h0
+ = h0

∗∗ (6 and 7);
N denotes the nozzle and S denotes the sill 3.

bottom. Therefore, there exists a range of flow parameters in which the classical equation (1) is also applicable to
hydraulic jumps in a channel with a step.

It should also be noted that in the example considered, the perturbation does not propagate well upstream,
although on the free-surface profile there is a point D at which η0

D = h0
∗∗∗. This point is away from the step and is

preceded by supercritical flow. The perturbation began to propagate upstream under a combination of parameters
such that the point D was directly above the step.
Figure 4 shows results of experiments with the sill 3. The channel bottom pressure distribution p0(x0) is shown
along with curves of η0(x0). The pressure is normalized to ρgη (ρ is the fluid density), so that according to the
hydrostatic law of pressure distribution, the relationship p0 = η0 must hold. In this series of experiments, the
tail-water depth h+ was varied with unchanged values of h∗ and h−.

The points 5 and 6 were obtained for the case where the level regulator was absent from the channel outlet
section and the flow was supercritical both ahead of the sill and at an appreciable distance behind it. According
to the theory of ideal fluid, a bump is formed over the sill, and behind the sill, the free-surface level increases
monotonically under the action of friction on the bottom and the walls of the channel. At the exit from the channel,
as in the example in Figs. 1 and 2, the depth h0

∗∗ was established. The pressure distribution differs from hydrostatic
pressure only over the sill and at distances of 2h∗ and 5h∗ ahead of and behind the sill, respectively.
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TABLE 1

Variant 1 Variant 2 Variant 3

x0 η0 p0 x0 η0 p0 x0 η0 p0

−10.9 — 0.61 −10.9 — 0.61 −11 - – 0.61
−10 0.50 0.46 −10 0.50 0.46 −10.2 0.51 0.50
−9.5 0.48 0.50 −8.5 0.49 0.50 −9.5 0.50 0.50
−7 0.52 0.54 −7 0.53 0.53 −9 0.51 0.66
−5 0.55 0.57 −5 0.55 0.57 −8 0.90 1.00
−3 0.56 0.60 −3 0.56 0.59 −7 1.22 1.24
−2 0.56 0.66 −2 0.57 0.65 −5 1.58 1.58
−1 0.59 0.85 −1 0.59 0.85 −3 1.75 1.75
−0.25 0.68 1.25 −0.25 0.68 1.30 −1.5 1.80 1.80
0.45 0.86 0.97 0.45 0.86 0.95 −0.3 1.80 1.90
1.4 1.05 0.81 1.40 1.07 0.82 0.5 1.78 1.79
2.1 1.08 1.04 2.1 1.09 1.05 1.45 1.68 1.59
3 1.06 0.83 3 1.06 0.84 2.2 1.55 1.55
4 0.89 0.89 4 0.89 0.89 3 1.40 1.39

5.3 0.66 1.17 5.3 0.66 1.17 4 1.30 1.50
7 0.62 0.81 6.2 0.60 1.00 5.4 1.61 1.76
8 0.62 0.67 7 0.66 1.02 7 1.68 1.68
9 0.63 0.66 8 0.81 1.20 9 1.68 1.68
12 0.65 0.67 9 1.22 1.35 12 1.68 1.68
14 0.67 0.69 10 1.50 1.50 15 1.68 1.68
20 0.71 0.73 11.5 1.65 1.65 20 1.69 1.68
24 0.75 0.76 15 1.65 1.65 25 1.69 1.69
26 0.81 0.81 17.5 1.66 1.66 — — —

Notes. Variant 1 corresponds to the following experimental conditions: h∗ = 5.8 cm, h0
− = 0.5, and

h0
+ < h∗ (no jump), variant 2 to h∗ = 5.8 cm, h0

− = 0.5, and h0
+ = 1.65 > h∗ (jump behind the sill), and

variant 3 to h∗ = 5.7 cm, h0
− = 0.51, and h0

+ = 1.68 > h∗ (jumps before and behind the sill).

Fig. 5. Comparison of experimental and calculated data for the sill 3 (h∗ = 5.8 cm, b0 = 0.42,
Fr = 2.75, and h0

+ = 1.7).

Fig. 6. Air cavity above the sill 2 (h∗ = 4.1 cm, b0 = 0.34, l0 = 5.62, and Fr = 3.91).
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The points 3 and 4 were obtained under a substantial increase of the depth h+ compared to the previous
example using a vertical plate protruding over the bottom at the channel exit. Behind the sill, a classical hydraulic
jump formed, and the flow over and ahead of the sill remained the same as in the previous example. In hydraulics,
such a regime of sill overflow is called nonsubmerged flow [9, 10]. The depths at the points C and D are mutually
conjugated by (1). This example confirms the existence of a parameter range in which the presence of a sill does
not affect the values of the conjugate depths obtained for a flat bottom.

The points 1 and 2 are obtained for the case where the depth h+ is increased by only 6.3% compared to the
case corresponding to the points 3 and 4. However, this has led to the formation of two hydraulic jumps with a
roller at the head: ahead of and behind the sill. For the jump ahead of the sill, the conjugate depths are established
at the points A and B, and for the jump behind the sill, the points C and D still correspond to the conjugate
depths. In this example, the departure from the hydrostatic law is negligible and occurs only over the back face of
the sill.

Conclusions. Current mathematical models describe the flow under consideration over a rather wide range
of parameters. Figure 5 shows results of verification of the mathematical model of [1, 8], which incorporates the
turbulent mixing process upon wave breaking. The experimental points correspond to the points 1 in Fig. 4, and
the solid curve refer to calculation results. The model satisfactorily describes even a complicated flow regime with
two hydraulic jumps. For testing other models, the obtained experimental data are tabulated.

At the same time, sill overflow involves complicated processes, whose mathematical modeling requires novel
approaches. As an example, Fig. 6 shows a photograph of a cavity resulting from flow separation from the leading
front of the sill. The strong fluid discontinuity observed in Fig. 6 occurs for rather large values of Fr and b0.
Cavities are also formed behind the sill [15]. In contrast to them, the cavity in Fig. 6 has no contact with any of
the solid boundaries.
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